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These supplementary methods describe a theoretical analysis of spike initiation in a simplified 

model of the axon initial segment (AIS). 

 

1. Bifurcation in the electrical model of the axon initial segment (AIS) 

 

Na channels are placed in the initiation site only. The initiation site receives a Na current f(Va), 

where Va is the voltage at the initiation site (a for axonal), and is electrically coupled to the soma 

by the axial resistance Ra. This resistance is determined by cable theory through the following 

formula: 

𝑅𝑎 =
4𝑅𝑖
𝜋𝑑2

x 

where Ri is intracellular resistivity (Ri = 150 Ω.cm here), d is the diameter of the axon (d = 1 µm 

here) and x is the distance to the soma (typically about 40 µm). This simplification is justified as 

follows: 

- The initiation site is electrotonically close to the soma, about 40 µm compared to a space 

constant of magnitude 1 mm (λ = 700 µm here), so a single compartment is sufficient. 

- For the same reason, the current to the distal end of the AIS is negligible compared to the 

lateral current to the soma (see Fig. 1E). 

- The Na current activates very quickly (characteristic time constant is a fraction of ms) 

and therefore the proportion of open channels is considered equal to its equilibrium 

value. 

- Capacitive currents are small, given the small area of the AIS. 

Tapering in the proximal part of the axon (hillock) can be taken into account by modifying the 

axial resistance Ra. If axonal diameter decreases linearly over an initial length y from d(0) to 

d(y), then the axial resistance of that part of axon is (resistance of a truncated cone): 

𝑅𝑎
0 =

4𝑅𝑖
𝜋𝑑(0)𝑑(𝑦)

y 

It can then be added to the axial resistance of the rest of the axon (formula above). 



In this model, the lateral current equals the Na current, which means: 

𝑉𝑎 − 𝑉𝑠
𝑅𝑎

= 𝑓(𝑉𝑎) 

Thus the axonal voltage Va is determined as an implicit function of the somatic voltage Vs 

through a fixed point equation. This function is plotted in Fig. 1F. At a critical voltage, Va 

suddenly changes. This corresponds to a bifurcation, when the solution of the above equation 

becomes unstable. The value of this critical point is obtaining by differentiating the equation: 

1 = 𝑅𝑎𝑓
′(𝑉𝑎) 

The value of Va that satisfies this equation is the axonal threshold (see below). For a bifurcation 

to exist, the above equation must have a solution, which will depend on Ra. To get a quantitative 

estimate, we now consider that the Na current is given by the following equation: 

𝑓(𝑉𝑎) = 𝑔𝑁𝑎(𝐸𝑁𝑎 − 𝑉𝑎)ℎ(
𝑉𝑎 − 𝑉1/2

𝑘𝑎
) 

where h is the unit Boltzmann function and V1/2 is the half-activation voltage. The Boltzmann 

function satisfies: h’=h(1-h). 

Thus the derivative of the current is: 

𝑓′(𝑉𝑎) = −𝑔𝑁𝑎ℎ (
𝑉𝑎 − 𝑉1/2

𝑘𝑎
) + 𝑔𝑁𝑎

𝐸𝑁𝑎 − 𝑉𝑎
𝑘𝑎

ℎ (
𝑉𝑎 − 𝑉1/2

𝑘𝑎
) (1 − ℎ (

𝑉𝑎 − 𝑉1/2

𝑘𝑎
)) 

There is a bifurcation if the maximum of f'(V) is greater than 1/Ra. However, there is no simple 

analytical formula for this maximum. As an approximation, we consider the value at V=V1/2: 

𝑓′(𝑉1/2) = −
𝑔𝑁𝑎
2

+
𝑔𝑁𝑎
4

𝐸𝑁𝑎 − 𝑉1/2

𝑘𝑎
 

Then we have: 

𝑅𝑎𝑓
′(𝑉1/2) = 𝑅𝑎𝑔𝑁𝑎 (−

1

2
+
𝐸𝑁𝑎 − 𝑉1/2

4𝑘𝑎
) 

If this is greater than 1, then there is bifurcation. This gives a condition on Ra.gNa. Using: ENa = 60 

mV, V1/2 = -40 mV, ka = 6 mV, we get the following condition: 

𝑅𝑎𝑔𝑁𝑎 > 0.27 

This can be related to the geometry of the AIS. If it is assumed that Na channel density is uniform 

over length , then: 

𝑔𝑁𝑎 = 𝑔∗Δ𝜋𝑑 

where g* is the Na channel density. With the same numbers as above, the bifurcation condition 

reads: 

𝑔∗𝑅𝑖
xΔ

d
> 0.07 



In other words, there is a critical distance from the soma for the initiation site, above which 

spike initiation is sharp. 

 

2. Spike threshold 

We now estimate the value of the voltage at the bifurcation point, which we define as the spike 

threshold. We may define the threshold at the soma (for Vs) or at the initiation site (for Va). 

2.1. Axonal and somatic threshold 

To this end, we make the assumption that the bifurcation occurs when Va is well below V1/2, so 

that the activation curve of the Na channels (a Boltzmann function) can be approximated by an 

exponential function (and of course, we make the assumption that there is a bifurcation). We 

obtain the following equation (axial current equals Na current): 

𝑉𝑎 − 𝑉𝑠
𝑅𝑎

= 𝑔𝑁𝑎(𝐸𝑁𝑎 − 𝑉𝑎)exp⁡(
𝑉𝑎 − 𝑉1/2

𝑘𝑎
) 

This can be rewritten as follows: 

𝑉𝑎 − 𝑉𝑠 + 𝑔𝑁𝑎𝑅𝑎(𝑉𝑎 − 𝐸𝑁𝑎) exp (
𝑉𝑎−𝑉1/2

𝑘𝑎
) = 0   (1) 

At the bifurcation point, we have (differentiate with respect to Va): 

1 + 𝑔𝑁𝑎𝑅𝑎 exp (
𝑉𝑎 − 𝑉1/2

𝑘𝑎
) (1 +

𝑉𝑎 − 𝐸𝑁𝑎
𝑘𝑎

) = 0 

Given that |Va-ENa| >> ka, this simplifies to: 

𝑔𝑁𝑎𝑅𝑎 exp(
𝑉𝑎−𝑉1

2

𝑘𝑎
)(

𝑉𝑎−𝐸𝑁𝑎

𝑘𝑎
) = −1  (2) 

We combine it with equation (1), and obtain: 

𝑉𝑠 = 𝑉𝑎 − 𝑘𝑎 

Therefore, there is a difference ka ≈ 6 mV between the somatic and axonal threshold. 

 

2.2. The threshold equation 

An approximated equation for the axonal threshold is obtained by replacing ENa-Va by ENa-V1/2 in 

equation (2): 

Va = 𝑉1/2 − 𝑘𝑎 log
𝑔𝑁𝑎𝑅𝑎(𝐸𝑁𝑎 − 𝑉1/2)

𝑘𝑎
 

Thus the spike threshold at the soma is: 



Vs = 𝑉1/2 − 𝑘𝑎 − 𝑘𝑎 log
𝑔𝑁𝑎𝑅𝑎(𝐸𝑁𝑎 − 𝑉1/2)

𝑘𝑎
 

It is possible to obtain a more accurate threshold equation, from equation (2), using a special 

function. The Lambert function is defined as the solution x=W(y) to y=xex. We rewrite equation 

(2) as follows: 

𝑉𝑎 − 𝐸𝑁𝑎
𝑘𝑎

exp (
𝑉𝑎 − 𝐸𝑁𝑎

𝑘𝑎
+
𝐸𝑁𝑎 − 𝑉1/2

𝑘𝑎
) = −

1

𝑔𝑁𝑎𝑅𝑎
 

Writing x=(Va-ENa)/ka, we get: 

𝑥𝑒𝑥 = −
1

𝑔𝑁𝑎𝑅𝑎
exp (

𝑉1/2 − 𝐸𝑁𝑎

𝑘𝑎
) 

There are in fact two solutions for negative numbers. Here clearly x<-1, and therefore we are 

interested in the lower branch W-1 of the Lambert function. Therefore, we obtain: 

𝑉𝑎 = 𝐸𝑁𝑎 + 𝑘𝑎𝑊−1 (−
1

𝑔𝑁𝑎𝑅𝑎
exp⁡(

𝑉1/2 − 𝐸𝑁𝑎

𝑘𝑎
)) 

and the spike threshold at the soma is: 

𝑉𝑠 = 𝐸𝑁𝑎 − 𝑘𝑎 + 𝑘𝑎𝑊−1 (−
1

𝑔𝑁𝑎𝑅𝑎
exp⁡(

𝑉1/2 − 𝐸𝑁𝑎

𝑘𝑎
)) 

At the critical point (section 1), we have: 

𝑅𝑎𝑔𝑁𝑎 (−
1

2
+
𝐸𝑁𝑎 − 𝑘𝑎 − 𝑉1/2

4𝑘𝑎
) = 1 

And therefore: 

𝑉𝑠 = 𝐸𝑁𝑎 − 𝑘𝑎 + 𝑘𝑎𝑊−1 (−(−
1

2
+
𝐸𝑁𝑎 − 𝑘𝑎 − 𝑉1/2

4𝑘𝑎
)exp⁡(

𝑉1/2 − 𝐸𝑁𝑎

𝑘𝑎
)) 

This is the maximum spike threshold when initiation is sharp, and it is a constant that is 

independent of geometry. 

 

3. The kink 

At the soma, a lateral current is received at spike initiation, after the bifurcation occurs. When all 

Na channels are open, the fixed point equation reads: 

𝑉𝑎 = 𝑉𝑠 + 𝑔𝑁𝑎𝑅𝑎(𝐸𝑁𝑎 − 𝑉𝑎) 

This defines Va as a function of Vs: 

𝑉𝑎 =
𝑉𝑠 + 𝑔𝑁𝑎𝑅𝑎𝐸𝑁𝑎
1 + 𝑔𝑁𝑎𝑅𝑎

=
𝑉𝑠 − 𝐸𝑁𝑎
1 + 𝑔𝑁𝑎𝑅𝑎

+ 𝐸𝑁𝑎 



The voltage difference between soma and initiation site is then: 

Δ𝑉 = 𝑉𝑎 − 𝑉𝑠 =
𝑔𝑁𝑎𝑅𝑎

1 + 𝑔𝑁𝑎𝑅𝑎
(𝐸𝑁𝑎 − 𝑉𝑠) 

The lateral current is then: 

𝐼𝑙 =
Δ𝑉

𝑅𝑎
≈

𝑔𝑁𝑎
1 + 𝑔𝑁𝑎𝑅𝑎

(𝐸𝑁𝑎 − 𝑉𝑠) 

Note that the largest possible current (with large gNa) is (ENa-Vs)/Ra, and therefore is inversely 

proportional to the distance between the initiation site (or a proximal site in the axon with Na 

channels) and the soma. 

 

4. Onset rapidness 

4.1. Onset rapidness at the axonal initiation site 

Onset rapidness has been characterized as the slope of the spike trajectory in phase plot (dV/dt 

vs. V) when dV/dt has a specific value α (typically 10 mV/ms). This corresponds to 

(d²V/dt²)/(dV/dt) at that point, which equals d/dt(log dV/dt). 

We consider the membrane equation at the axonal initiation site, neglecting resistive currents: 

𝐶
𝑑𝑉𝑎
𝑑𝑡

= 𝑔𝑁𝑎exp⁡(

𝑉𝑎 − 𝑉1
2

𝑘𝑎
)(𝐸𝑁𝑎 − 𝑉𝑎) 

where C is the capacitance of the axonal compartment. 

Then: 

𝑑

𝑑𝑡
(log

𝑑𝑉𝑎
𝑑𝑡

) = (
1

𝑘𝑎
−

1

𝐸𝑁𝑎 − 𝑉𝑎
) .
𝑑𝑉𝑎
𝑑𝑡

 

At spike initiation, ENa - Va >> ka, and therefore onset rapidness is: 

𝑑

𝑑𝑡
(log

𝑑𝑉𝑎
𝑑𝑡

) ≈
1

𝑘𝑎
.
𝑑𝑉𝑎
𝑑𝑡

 

Therefore, with ka = 6 mV and dVa/dt = 10 mV/ms, we get onset rapidness of about 1.7 ms-1. This 

calculation would be identical with a single-compartment (isopotential) neuron. 

 

4.2. Onset rapidness at the soma 

Since the spike is initiated in the axon, the initial "kink" in the voltage at the soma essentially 

reflects the lateral current, that is: 

𝐶
𝑑𝑉𝑠⁡

𝑑𝑡
=
𝑉𝑎 − 𝑉𝑠
𝑅𝑎

 



where Vs is the somatic voltage and Va is the axonal voltage. Therefore, a criterion α = dVs/dt 

corresponds to a specific value of the voltage mismatch between soma and AIS: 

𝑉𝑎 − 𝑉𝑠 = 𝑅𝑎𝐶𝛼 

With previous parameters, this corresponds to 45 mV for Na channels at 40 µm, and to 17 mV 

with channels at 15 µm. 

We differentiate the membrane equation: 

𝑅𝑎𝐶
𝑑2𝑉𝑠
𝑑𝑡2

=
𝑑𝑉𝑎
𝑑𝑡

− 𝛼 

That is: 

𝑅𝑎𝐶
𝑑2𝑉𝑠
𝑑𝑡2

=
𝑔𝑁𝑎
𝐶𝑎

exp⁡(

𝑉𝑎 − 𝑉1
2

𝑘𝑎
)(𝐸𝑁𝑎 − 𝑉𝑎) − 𝛼 

where Ca is the capacitance of the axonal compartment. 

Dividing by Ra.C.dV/dt (=Ra.C.α): 

𝑑2𝑉𝑠
𝑑𝑡2

/
𝑑𝑉𝑠
𝑑𝑡

=
𝑔𝑁𝑎

𝛼𝑅𝑎𝐶𝐶𝑎
exp⁡(

𝑉𝑎 − 𝑉1
2

𝑘𝑎
)(𝐸𝑁𝑎 − 𝑉𝑎) −

1

𝑅𝑎𝐶
 

with 𝑉𝑎 = 𝑉𝑠 + 𝑅𝑎𝐶𝛼 (where Vs is close to threshold). It appears that onset rapidness correlates 

with the total Na conductance, unlike the isopotential case. 

 

5. Distributed channels 

We now consider that Na channels are distributed with density u(x) along the AIS. Neglecting 

capacitive and leak currents on the AIS, the cable equation reads: 

𝜆2
𝑑2𝑉

𝑑𝑥2
= −𝑢(𝑥)𝑓(𝑉) 

with two boundary conditions: V(0)=Vs and dV/dt(L)=0, where L is the distal end of the AIS and 

f(V) is the proportion of open channels times (ENa-V). The solution of this second-order equation 

corresponds to the voltage profile across the axon shown in Fig. 4A-B. This equation implies that 

the profile is concave (voltage derivative decreases as x increases), and since the minimum 

derivative is reached at the end x = L and equals 0, it must be positive on the entire AIS. 

Therefore the voltage increases along the axon, even if the channel density decreases or is non-

monotonous. 

In principle, it is possible to define a bifurcation problem in this setting, but it is a non-standard 

one as the bifurcation parameter is a boundary condition (the somatic voltage). 

 



6. Kv1 channels 

6.1. Bifurcation condition 

Low-threshold Kv1 channels are also expressed in the AIS. Here we consider that they are 

expressed at the same location as Nav1.6 channels, clustered at a single point in the AIS. The 

bifurcation condition is unchanged: 

1 = 𝑅𝑎𝑓
′(𝑉𝑎) 

but the current f(Va) now includes the Kv1 current: 

𝑓(𝑉𝑎) = 𝑔𝑁𝑎(𝐸𝑁𝑎 − 𝑉𝑎)ℎ(

𝑉𝑎 − 𝑉1
2

𝑘𝑎
)+ 𝑔𝐾(𝐸𝐾 − 𝑉𝑎) 

where gK is the Kv1 conductance and EK is the reversal potential. Thus the condition for sharp 

spike initiation becomes: 

𝑅𝑎𝑓
′(𝑉1/2) = 𝑅𝑎𝑔𝑁𝑎 (−

1

2
+
𝐸𝑁𝑎 − 𝑉1/2

4𝑘𝑎
) − 𝑅𝑎𝑔𝐾 > 1 

Therefore, the phenomenon is essentially unchanged, but there are quantitative differences. 

 

6.2. Axonal and somatic threshold 

Regarding the spike threshold, equation (1) (section 2.1) becomes: 

𝑉𝑎 − 𝑉𝑠 + 𝑔𝑁𝑎𝑅𝑎(𝑉𝑎 − 𝐸𝑁𝑎) exp (
𝑉𝑎−𝑉1

2

𝑘𝑎
) + 𝑔𝐾𝑅𝑎(𝑉𝑎 − 𝐸𝐾) = 0   (1*) 

At the bifurcation point, we have (differentiate with respect to V): 

1 + 𝑔𝐾𝑅𝑎 + 𝑔𝑁𝑎𝑅𝑎 exp (
𝑉𝑎 − 𝑉1/2

𝑘𝑎
) (1 +

𝑉𝑎 − 𝐸𝑁𝑎
𝑘𝑎

) = 0 

Given that |Va-ENa| >> ka, this simplifies to: 

𝑔𝑁𝑎𝑅𝑎 exp(
𝑉𝑎−𝑉1

2

𝑘𝑎
)(

𝑉𝑎−𝐸𝑁𝑎

𝑘𝑎
) = −1 − 𝑔𝐾𝑅𝑎  (2*) 

As previously, we replace ENa-Va by ENa-V1/2 in equation (2*): 

Va = 𝑉1/2 − 𝑘𝑎 log
𝑔𝑁𝑎𝑅𝑎(𝐸𝑁𝑎 − 𝑉1/2)

𝑘𝑎(1 + 𝑔𝐾𝑅𝑎)
 

This is the spike threshold at the initiation site. As expected, the threshold increases when the 

Kv1 conductance increases. This equation is in fact essentially identical to the one derived in 

isopotential neurons, with the leak conductance replaced by the inverse of the axial resistance 

(Platkiewicz & Brette, PLoS Comp. Biol. 2010). In particular, the spike threshold increases 

logarithmically with the conductance at the initiation site. 



We combine equations (1*) and (2*) to obtain the somatic threshold: 

𝑉𝑠 = 𝑉𝑎 − 𝑘𝑎 + 𝑔𝐾𝑅𝑎(𝑉𝑎 − 𝐸𝐾 − 𝑘𝑎) 

where Va is given by the above equation. This predicts that the difference between the somatic 

and axonal threshold should increase when Kv1 channels open. Thus, the somatic spike 

threshold increases approximately linearly (and not logarithmically) with Kv1 conductance. 

Therefore, a relatively small amount of Kv1 current is sufficient to depolarize the somatic spike 

threshold. 

 

6.3. Energetic efficiency 

Since Kv1 channels oppose the currents produced by Na channels, it may seem that they are an 

energetically expensive way of modulating the spike threshold. However, the additional energy 

cost is limited. 

The Na current is: 

𝐼𝑁𝑎 = 𝑔𝑁𝑎 exp(

𝑉𝑎 − 𝑉1
2

𝑘𝑎
)(

𝐸𝑁𝑎 − 𝑉𝑎
𝑘𝑎

) 

and from equation (2*) we find that its value at spike initiation is: 

𝐼𝑁𝑎 =
𝑘𝑎
𝑅𝑎

(1 + 𝑔𝐾𝑅𝑎) 

This current increases in an affine way with the Kv1 conductance, and therefore (approximately) 

with somatic spike threshold. To give an order of magnitude, if the spike threshold with all Kv1 

channels closed is -60 mV and EK = -90 mV, then the Na current at spike initiation is doubled for 

a spike threshold shift of 36 mV (gK.Ra = 1), which is about 3 times larger than the maximal span 

typically observed in cortical neurons in vivo. 

 


